

Flows of engineered nanomaterials through the recycling system in Switzerland

Alejandro Caballero-Guzman

Tianyin Sun Bernd Nowack EMPA St. Gallen, Switzerland

SUN Conference 2015 Venice, Italy March 9-11, 2015

I. Background and goal

Sun et al. (2014) estimated the ENM mass flows in Switzerland and the European Union

- Pigment-TiO₂
- Nano-TiO₂
- Nano-Ag
- Nano-ZnO
- CNT
- Fullerenes

T. Y. Sun, F. Gottschalk, K. Hungerbuhler, B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. *Environmental Pollution* 185, 69 (2014).

I. Background and goal

T. Y. Sun, F. Gottschalk, K. Hungerbuhler, B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. *Environmental Pollution* 185, 69 (2014).

1. a) System definition.

- 1. b) Input information analysis
 - 33 consumer products categories analyzed using public inventories

- **1**. b) Input information analysis
 - Nano-mass input to recycling (Tons per year in 2012), based on Sun et al. (2014)

	Percentile 15	Mode	Percentile 85
Nano-TiO ₂	30	43	79
Nano-ZnO	3	5	18
CNT	2	3	5
Nano-Ag	0.3	0.4	0.5

2. Chacterization of the recycling system using flow diagrams

E-waste recycling process (example)

Sources: Goodship and Stevels (2012) and info available in Internet, among others.

3. Calculate the transfer vectors

For each product category i, determine

 $(TC_{WIP}, TC_{LF}, TC_{EXP}, TC_{PMC}, TC_{CK}, TC_{WW}, TC_{ELIM})$

such that
$$0 \leq TC_x \leq 1$$
 and $\sum TC_x = 1$

3. Calculate the transfer vectors.

	Step 1	Step 2	Step 3	Step 4	Result
	Products with ENM in plastics	(<i>TC_{WIP}</i> , <i>TC_{EXP}</i>) (0.50, 0.50)	\$ 0.70 =	(0.35,0.35)	
Consumer electronics				+ 3	(0.45,0.55)
electionics	Products with ENM in batteries	(<i>TC_{WIP}</i> , <i>TC_{EXP}</i>) (0.33, 0.66)	\$ 0.30 =	(0.10,0.20)	
	Split into product subcategories	Assess TCs by subcategories	Multiply by mass distribution	Sum the weighted vectors	Category transfer vector

- 4. Stochastic flow calculation
 - Probabilistic approach of MFA to incorporate uncertainty based on Gottschalk et al. (2010) \rightarrow simulation using Monte Carlo-Markov Chain
 - TC's used to define triangular distributions
 - Mode = TC point value
 - Lower bound = 50% of the TC
 - Upper bound = 150% of the TC
 - Distributions simulation using 100,000 random values

F. Gottschalk, R. W. Scholz, B. Nowack, Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles. *Environmental Modelling & Software* 25, 320 (2010). 10/30

Model assumptions

- Mass-based approach
- ENM characteristics (size distribution, shape...) have no influence on final fate
- ENM transformations considered: only elimination
- Static model (all flows occur in one year)

1. Only «relevant» product categories selected (relevancy measured by total nano-mass transferred to recycling; at least ≥95%)

2. Product types analysis

- a) Composition
- b) Material fraction with ENM

Paints

3. Fate of the material fractions with ENM within the Swiss recycling system.

Material fraction	Associated recycling process	Fate
Ceramics	E-waste	WIP
Filter components	E-waste, cooling devices	WIP
Li-ion batteries	E-waste	Exported
Plastics	E-waste, cooling devices	WIP, Exported

Sources: waste management statistics and regulations; discussions with experts.

4. Transfer vector assessment for the Consumer Electronics subcategories.

Product	Material fraction	Distribu- tion (%)	Transfer Coefficients (TCs)						
Category			WIP	LF	EXP	РМС	СК	ww	ELIM
Consumer electronics	Ceramics	74	0.96	-	-	-	-	0.04	-
	Plastics	22	0.48	-	0.48	-	-	0.04	-
	Filter components	4	1.00	-	-	-	-	-	-
	TOTAL	100	0.85	-	0.11	-	-	0.04	-

Sources:

Distribution: inventory information and discussions with experts.

TCs: waste statistics and regulation; literature based.

1. a) System definition.

REMINDER

4. Transfer vector assessment for the Consumer Electronics subcategories.

Product	Material fraction	Distribu- tion (%)	Transfer Coefficients (TCs)						
Category			WIP	LF	EXP	РМС	СК	ww	ELIM
Consumer electronics	Ceramics	74	0.96	-	-	-	-	0.04	-
	Plastics	22	0.48		0.48	_		0.04	_
	Filter components	4	1.00	-	-	-	-	-	-
	TOTAL	100	0.85	-	0.11	-	-	0.04	-

Sources:

Distribution: inventory information and discussions with experts.

TCs: waste statistics and regulation; literature based.

4. Transfer vector assessment for the Consumer Electronics subcategories.

Product	Material fraction	Distribu- tion (%)	Transfer Coefficients (TCs)						
Category			WIP	LF	EXP	РМС	СК	ww	ELIM
Consumer electronics	Ceramics	74	0.96	-	-	-	-	0.04	-
	Plastics	22	0.48	-	0.48	-	-	0.04	-
	Filter components	4	1.00	-	-	-	-	-	-
	TOTAL	100	0.85	-	0.11	-	-	0.04	-

Sources:

Distribution: inventory information and discussions with experts.

TCs: waste statistics and regulation; literature based.

- 5. Transfer vectors for the product categories with nano-TiO₂:
 - Final input for the simulation of the probability distributions.

	Product	Transfer Coefficients (TCs)						
ENM	category	WIP	LF	EXP	РМС	СК	ww	ELIM
TiO₂	Consumer electronics	0.85	-	0.11	-	-	0.04	-
	Paint	0.20	0.68	-	0.08	0.04	-	-

6. ENM probabilistic flows in 2012 (tons/year). Mode values (in blue) and percentiles 15th and 85th.

6. ENM probabilistic flows in 2012 (tons/year). Mode values (in blue) and percentiles 15th and 85th.

- Waste Incineration Plant (WIP): plastics, painted wood, ceramics
- Landfill (LF) : mineral material with paint (e.g. gypsum, plaster)

6. ENM probabilistic flows in 2012 (tons/year). Mode values (in blue) and percentiles 15th and 85th.

- Exported (EXP): plastics
- Production-Manufacture-Consumption (PMC): demolished concrete
- Cement Kiln (CK): mineral residues or wood with paint

6. ENM probabilistic flows in 2012 (tons/year). Mode values (in blue) and percentiles 15th and 85th.

 Waste water (WW): releases during washing processes applied during recycling.

24/30

ENM	ZnO	Ag	CNT
Main fate	Landfills (3t)	WIP (0.2t)	Exported (2.4t)
	Mineral waste	Plastics, filters, wood	Batteries, chips, PCBs
Secondary	WIP (1t)	Exported (0.06t)	Eliminated (<1t)
fates	Wood	Plastics and textiles	Non-fe metals
	Cement+Concrete	Eliminated (0.06t)	Incinerated (<1t)
	production (<1t)	Fe-metal	Nanocomposites
	willieral waste	Waste water (0.04t) Landfill (<0.01t) Mineral waste	Car composites re-used (<1t)
		Cement+Concrete production (<0.01t) Mineral waste	

25/30

ENM	ZnO	Ag	CNT
Main fate	Landfills (3t) Mineral waste		
Secondary fates	WIP (1t) Wood	Exported (0.06t) Plastics and textiles	Eliminated (<1t) Non-fe metals
	Cement+Concrete production (<1t)	Eliminated (0.06t) Fe-metal	Incinerated (<1t) Nanocomposites
	Mineral waste	Waste water (0.04t)	Car composites re-used
	Landfill (<0.01t) Mineral waste		(<1T)
		Cement+Concrete production (<0.01t) Mineral waste	

26/30

ENM	ZnO	Ag	CNT
Main fate		WIP (0.2t) Plastics, filters, wood	
Secondary fates	WIP (1t) Wood	Exported (0.06t) Plastics and textiles	Eliminated (<1t) Non-fe metals
	Cement+Concrete production (<1t)	Eliminated (0.06t) Fe-metal	Incinerated (<1t) Nanocomposites
	wineral waste	Waste water (0.04t)	Car composites re-used
		Landfill (<0.01t) Mineral waste	(<11)
		Cement+Concrete production (<0.01t) Mineral waste	

27/30

ENM	ZnO	Ag	CNT
Main fate			Exported (2.4t) Batteries, chips, PCBs
Secondary fates	WIP (1t) Wood	Exported (0.06t) Plastics and textiles	Eliminated (<1t) Non-fe metals
	Cement+Concrete production (<1t)	Eliminated (0.06t) Fe-metal	Incinerated (<1t) Nanocomposites
	wineral waste	Waste water (0.04t)	Car composites re-used
		Landfill (<0.01t) Mineral waste	(<1()
		Cement+Concrete production (<0.01t) Mineral waste	

III. Total ENM outflow distribution (all ENMs)

28/30

IV. Conclusions

- Main flows to waste incineration, landfills or exported.
- No significant dissipation of ENM to new products (only to very small extent into plastics, concrete and cement).
- ENM risk assessment during recycling should focus on occupational exposure and release to the environment.
- Main uncertainties
 - ENM mass distribution between product subcategories
 - ENM release kinetics \rightarrow Product knowledge

Thanks!

MAIN REFERENCE

Caballero-Guzman, A., T. Y. Sun and B. Nowack (2015). "Flows of engineered

nanomaterials thorugh the recycling process in Switzerland." Waste

Management. 36: 33-45. DOI: 10.1016/j.wasman.2014.11.006

ACKNOWLEGMENTS

SUN project funding from the EU FP7/2007-2013

CONTACT INFORMATION

<u>alejandro.caballero@empa.ch</u>

